Are you sure its #e^(3pi/2)# not #e^((3pi)/2)# because it makes more sense when you write it in trig form.
Remember this beauty?
#e^(ipi)=-1#
That was Euler's identity. This is the generalized formula:
#e^(ix)=cosx+isinx#
Therefore, we can break down the two terms involved:
#e^(i3/8pi)=cos((3pi)/8)+isin((3pi)/8)#
#e^(i7/2pi)=cos((7pi)/2)+isin((7pi)/2)=0+i*(-1)=-i#
#e^(i3/8pi)=(e^(i3/2pi))^(1/4)=(-i)^(1/4)#
#e^(i3/8pi)*e^(i3/2pi)=(e^(i3/2pi))^(1/4)*e^(i7/2pi)=(e^(i3/2pi))^(5/4)=(-i)^(5/4)=-(-1)^(7/8)#
Or
#e^(i3/8pi)*e^(i7/2pi) = sin((3pi)/8)-icos((3pi)/8)#
#=cos(pi/8)-isin(pi/8)#