What is the equation of the line normal to # f(x)=1/(e^x+4)# at # x=6#?

1 Answer
Oct 22, 2017

#y=((e^6+4)^2/e^6)(x-6)+(1/(e^6+4))#

Explanation:

To find the equation of Normal to the line #f(x)=1/(e^x+4# we need to find the slope of the normal and the #y# coordinate at #x_1=6#

We know the slope of normal is #(-1)/(dy/dx)# so ,

#y=1/(e^x+4)#

Differentiate both sides with respect to #x# using the chain rule.

#dy/dx=(-e^x)/(e^x+4)^2#

So the slope of the normal ( #m_n#) is #(-1)/(dy/dx)=(-1)/((-e^x)/(e^x+4)^2)#

Therefore #m_n=(e^x+4)^2/e^x#

Now to find the #y_1# coordinate when #x_1=6#

We know #f(x)=1/(e^x+4)#

#f(6)=1/(e^6+4)#

Therefore the #y_1# coordinate is #1/(e^6+4)#

We know the equation of a line is

#(y-y_1)=m_n(x-x_1)#

#(y-1/(e^6+4))=((e^6+4)^2/e^6)(x-6)#

Therefore #y=((e^6+4)^2/e^6)(x-6)+(1/(e^6+4))#