sin^2(2x)=sin(2x).sin(2x)sin2(2x)=sin(2x).sin(2x)
using the product rule
d(uv)=u.dv+v.dud(uv)=u.dv+v.du
d(sin(2x).sin(2x)=d(sin(2x)).sin(2x)+d(sin(2x)).sin(2x)d(sin(2x).sin(2x)=d(sin(2x)).sin(2x)+d(sin(2x)).sin(2x) ...(a)
d(sin(2x))=2cos(2x)d(sin(2x))=2cos(2x)
in a
2cos(2x).sin(2x)+2cos(2x).sin(2x)2cos(2x).sin(2x)+2cos(2x).sin(2x)
4sin(2x)cos(2x)4sin(2x)cos(2x) it can also writes as 2sin(4x)2sin(4x) identity of sin double
for sin(2x+1)sin(2x+1)
d(sin(u))=cos(u).d(u)d(sin(u))=cos(u).d(u)
then
d(sin(2x+1))=cos(2x+1).d(2x+1)d(sin(2x+1))=cos(2x+1).d(2x+1)
d(2x+1)=2d(2x+1)=2
d(sin(2x+1))=2cos(2x+1)d(sin(2x+1))=2cos(2x+1)
finally the answer is
2sin(4x)+2cos(2x+1)2sin(4x)+2cos(2x+1)