What is the derivative of this function sin ^2 (2x) + sin (2x+1) sin2(2x)+sin(2x+1)?

1 Answer
Nov 5, 2017

2sin(4x)+2cos(2x+1)2sin(4x)+2cos(2x+1)

Explanation:

sin^2(2x)=sin(2x).sin(2x)sin2(2x)=sin(2x).sin(2x)

using the product rule

d(uv)=u.dv+v.dud(uv)=u.dv+v.du

d(sin(2x).sin(2x)=d(sin(2x)).sin(2x)+d(sin(2x)).sin(2x)d(sin(2x).sin(2x)=d(sin(2x)).sin(2x)+d(sin(2x)).sin(2x) ...(a)

d(sin(2x))=2cos(2x)d(sin(2x))=2cos(2x)

in a

2cos(2x).sin(2x)+2cos(2x).sin(2x)2cos(2x).sin(2x)+2cos(2x).sin(2x)

4sin(2x)cos(2x)4sin(2x)cos(2x) it can also writes as 2sin(4x)2sin(4x) identity of sin double

for sin(2x+1)sin(2x+1)

d(sin(u))=cos(u).d(u)d(sin(u))=cos(u).d(u)
then

d(sin(2x+1))=cos(2x+1).d(2x+1)d(sin(2x+1))=cos(2x+1).d(2x+1)

d(2x+1)=2d(2x+1)=2

d(sin(2x+1))=2cos(2x+1)d(sin(2x+1))=2cos(2x+1)

finally the answer is

2sin(4x)+2cos(2x+1)2sin(4x)+2cos(2x+1)