How do you use the important points to sketch the graph of #y=x^2+5x+3#?

1 Answer
Nov 21, 2017

#A=(-0.7,0)#
#B=(-4.3,0)#
#C=(0,3)#
#D=(-2.5,-3.25)# min

Explanation:

#y=0 => x^2+5x+3=0#
#=>#
#x_(1,2)=(-5+-sqrt(5^2-4*1*3))/(2*1)=(-5+-sqrt13)/2#
#=>#
#x_1=(-5+sqrt13)/2~~-0.7#
#x_2=(-5-sqrt13)/2~~-4.3#
#=>#
#A=(-0.7,0)#
#B=(-4.3,0)#


#x=0 => y=0^2+5*0+3=3#
#=>#
#C=(0,3)#


MAX or MIN:
1) #a=1>0 =># y "smiles" #=># MIN
2) #y'=2x+5#
#=>#
#y'=0 => 2x+5=0 => x=-5/2=-2.5#
#=>#
#y_((-2.5))=(-2.5)^2+5*(-2.5)+3=-3.25#
#=>#
#D=(-2.5,-3.25)# min

graph (in order to check that all match):
graph{x^2+5x+3 [-10, 10, -5, 5]}