Is f(x)=cot(2x)*tanx^2f(x)=cot(2x)tanx2 increasing or decreasing at x=pi/3x=π3?

1 Answer
Dec 14, 2017

f(x)f(x) is decreasing at x=pi/3x=π3.

Explanation:

f(x) = cot(2x)*tan(x^2)f(x)=cot(2x)tan(x2)

f'(x) = −2[csc^2(2x)tan(x^2)−xcot(2x)sec^2(x^2)]

Calculating value of f'(x) at x= pi/3,

f'(pi/3) = −2[csc^2((2pi)/3)tan((pi/3)^2)−(pi/3)cot((2pi)/3)sec^2((pi/3)^2)]

f'(pi/3) = −2[csc^2((2pi)/3)tan(pi^2/9)−(pi/3)cot((2pi)/3)sec^2(pi^2/9)]

We know that,
csc((2pi)/3) = 1.1547, tan((2pi)/3)=-1.7320, tan(pi^2/9) = 1.948453 and sec(pi^2/9) = 2.19

=>f'(pi/3) = −2[1.1547^2*1.948453−(-pi/(3xx1.7320))*2.19^2]

=>f'(pi/3) = −2[1.3333*1.948453+(pi/5.196)*4.7961]

=>f'(pi/3) = −2[2.5979+(15.06739/5.196)]

We can see that the slope f'(x) at x=pi/3 is negative so the function f(x) is decreasing at x=pi/3.