f(x)=(x^2-81)/(x^2-4x)
In order for this function to be defined we need x^2-4x!=0
We have x^2-4x=0 <=> x(x-4)=0 <=> (x=0,x=4)
So D_f=RR-{0,4}=(-oo,0)uu(0,4)uu(4,+oo)
For xinD_f ,
f(x)=(x^2-81)/(x^2-4x) = ((x-9)(x+9))/(x^2-4x)
f(x)=0 <=> (x=9,x=-9)
- (x^2-81)/(x^2-4x)=y <=> x^2-81=y(x^2-4x)
x^2-81=yx^2-4xy
- Adding color(green)(4yx) in both sides,
x^2-81+4yx=yx^2
- Substracting color(red)(yx^2) from both sides
x^2-81+4yx-yx^2=0 <=>
x^2(1-y)+4xy-81=0
This is quadratic equation for x so
a=1-y
b=4y
c=-81
We need D=b^2-4*a*c>=0 <=>
16y^2-4(1-y)*(-81)>=0 <=>
16y^2+324(1-y)>=0 <=>
16y^2-324y+324>=0 <=>
4y^2-81y+81>=0
y_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)
= (81+-sqrt(6561-1296))/8
= (81+-sqrt(5265))/8
= (81+-9sqrt65)/8
4y^2-81y+81>=0 <=> (y<=(81-9sqrt65)/8 or y>=(81+9sqrt65)/8)
so, f(x)<=(81-9sqrt65)/8 or f(x)>=(81+9sqrt65)/8
Which means, f(D_f)=(-oo,(81-9sqrt65)/8]uu[(81+9sqrt65)/8,+oo)