What is the domain and range of f(x)={ x^2 - 81 }/ {x^2 - 4x}f(x)=x281x24x?

1 Answer
Dec 30, 2017

D_f=RR-{0,4}=(-oo,0)uu(0,4)uu(4,+oo) , Range = f(D_f)=(-oo,(81-9sqrt65)/8]uu[(81+9sqrt65)/8,+oo)

Explanation:

f(x)=(x^2-81)/(x^2-4x)

In order for this function to be defined we need x^2-4x!=0

We have x^2-4x=0 <=> x(x-4)=0 <=> (x=0,x=4)

So D_f=RR-{0,4}=(-oo,0)uu(0,4)uu(4,+oo)

For xinD_f ,

f(x)=(x^2-81)/(x^2-4x) = ((x-9)(x+9))/(x^2-4x)

f(x)=0 <=> (x=9,x=-9)

  • (x^2-81)/(x^2-4x)=y <=> x^2-81=y(x^2-4x)

x^2-81=yx^2-4xy

  • Adding color(green)(4yx) in both sides,

x^2-81+4yx=yx^2

  • Substracting color(red)(yx^2) from both sides

x^2-81+4yx-yx^2=0 <=>

x^2(1-y)+4xy-81=0

This is quadratic equation for x so
a=1-y
b=4y
c=-81

We need D=b^2-4*a*c>=0 <=>
16y^2-4(1-y)*(-81)>=0 <=>
16y^2+324(1-y)>=0 <=>
16y^2-324y+324>=0 <=>
4y^2-81y+81>=0

y_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)

= (81+-sqrt(6561-1296))/8

= (81+-sqrt(5265))/8

= (81+-9sqrt65)/8

4y^2-81y+81>=0 <=> (y<=(81-9sqrt65)/8 or y>=(81+9sqrt65)/8)

so, f(x)<=(81-9sqrt65)/8 or f(x)>=(81+9sqrt65)/8

Which means, f(D_f)=(-oo,(81-9sqrt65)/8]uu[(81+9sqrt65)/8,+oo)