How do you find the nth partial sum, determine whether the series converges and find the sum when it exists given #ln(1/2)+ln(2/3)+ln(3/4)+...+ln(n/(n+1))+...#?

1 Answer
Jan 4, 2018

We know that #ln(a/b)=ln(a)-ln(b)#.

So, we can rewrite the sum
#ln(1/2)+ln(2/3)+ln(3/4)+...+ln((n-1)/n)+ln(n/(n+1))#
to
#=(ln(1)-ln(2))+(ln(2)-ln(3))+(ln(3)-ln(4))+…+(ln(n-1)-ln(n))+(ln(n)-ln(n+1))#.

Slightly rearrange the terms:
#=ln(1)+(ln(2)-ln(2))+(ln(3)-ln(3))+…+(ln(n-1)-ln(n-1))-ln(n+1)#

See how almost all of the terms cancel out? This is called a telescoping sum. Everything simplifies to
#=ln(1)-ln(n+1)#
#=ln(1/(n+1))#

Now, to find the sum of the infinite series, set #n->oo#:
#lim_(n->oo)ln(1/(n+1))#
#=-oo#

So, the sum of the infinite series diverges.