What is the distance between the following polar coordinates?: # (8,(5pi)/3), (1,(7pi)/4) #

2 Answers
Jan 13, 2018

49.07 units

Explanation:

Formula for the distance between two points:

#Distance = sqrt((Deltax)^2+(Deltay)^2)#

Values:

#Deltax = 8 - 1 = 7#

#Deltay = (5pi)/3 - (7pi)/4 = -pi/12#

Solve with equation

#Distance = sqrt((Deltax)^2+(Deltay)^2)#

#Distance = sqrt((7)^2+(-pi/12)^2)#

#Distance = 49.07 units#

Jan 13, 2018

#d~~7#

Explanation:

#"using the "color(blue)"polar version of the distance formula"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(d^2=r_1^2+r_2^2-2r_1r_2cos(theta_2-theta_1))color(white)(2/2)|)))#

#"let "(r_1,theta_1)=(8,(5pi)/3)" and "(r_2,theta_2)=(1,(7pi)/4)#

#d^2=8^2+1^2-2.8.1cos((7pi)/4-(5pi)/3)#

#color(white)(d^2)=65-16cos(pi/12)#

#rArrd=sqrt(65-16cos(pi/12))=7.0388...#

#rArrd~~7" to nearest whole number"#