What is the slope of the tangent line of #r=theta/3+sin((3theta)/8-(5pi)/3)# at #theta=(7pi)/6#?
1 Answer
Explanation:
First, let's go ahead and find the values of
#r = theta/3 + sin((3theta)/8-(5pi)/3)#
#= (7pi)/18 + sin((21pi)/48 - (5pi)/3)#
#~~ 1.881#
#(dr)/(d theta) = 1/3 + 3/8 cos((3theta)/8 - (5pi)/3)#
#= 1/3 + 3/8cos((21pi)/48 - (5pi)/3)#
#~~ 0.0514#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now, the slope of the tangent line at any point is
Luckily, we can apply a version of the chain rule which states that
#dy/dx = (dy"/"d theta)/(dx"/"d theta)# We will also have to use the rectangular --> polar coordinate formulas:
#x = rcostheta#
#y = rsintheta#
Since we have expressions for
#dy/(d theta) = d/(d theta) rsintheta = (dr)/(d theta)sintheta + rcostheta#
#dx/(d theta) = d/(d theta) rcostheta = (dr)/(d theta)costheta -rsintheta#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With these formulas, we can find the slope of the line at
#dy/dx = (dy"/"d theta)/(dx"/"d theta) = ((dr)/(d theta)sintheta + rcostheta)/((dr)/(d theta)costheta -rsintheta)#
We already know that at
#sin((7pi)/6)=-0.5#
#cos((7pi)/6) = -0.866#
Now we can find our slope:
#((dr)/(d theta)sintheta + rcostheta)/((dr)/(d theta)costheta -rsintheta) = (0.0514 * (-0.5) + 1.881 * (-0.866))/(0.0514 * (-0.866) - 1.881 * (-0.5))#
#= -1.847#
Final Answer