How do you divide #(5x^3-7x^2-4x+1)/(3x-1) #?
1 Answer
Use long division.
Explanation:
#5/3x^2 (3x - 1) = (5x^3 - 5/3x^2)#
This will leave a remainder of:
#" "" "" "" ""5/3x^2#
#" "" "" "" ""----------------------------"#
#3x-1" "| 5x^3-7x^2-4x+1#
#" "" "" "-(5x^3 - 5/3x^2)#
#" "" "" "" ""--------------"#
#" "" "" "" "" "" "-16/3x^2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So now we're left with
#-16/9x(3x - 1) = (-16/3x^2 + 16/9x)#
This will leave a remainder of:
#" "" "" "" ""5/3x^2 - 16/9x#
#" "" "" "" ""----------------------------"#
#3x-1" "| 5x^3-7x^2-4x+1#
#" "" "" "-(5x^3 - 5/3x^2)#
#" "" "" "" ""-----------------"#
#" "" "" "" "" "" "-16/3x^2 -4x+1#
#" "" "" "" "-(-16/3x^2+16/9x)#
#" "" "" "" "" ""-------------------------"#
#" "" "" "" "" "" "" "" "" "-52/9x#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So now we're left with
#-52/27(3x-1) = (-52/9x + 52/27)#
This will leave a remainder of:
#" "" "" "" ""5/3x^2 - 16/9x - 52/27#
#" "" "" "" ""----------------------------"#
#3x-1" "| 5x^3-7x^2-4x+1#
#" "" "" "-(5x^3 - 5/3x^2)#
#" "" "" "" ""-----------------"#
#" "" "" "" "" "" "-16/3x^2 -4x+1#
#" "" "" "" "-(-16/3x^2+16/9x)#
#" "" "" "" "" ""-------------------------"#
#" "" "" "" "" "" "" "" "" "-52/9x + 1#
#" "" "" "" "" "" "" "-(-52/9x + 52/27)#
#" "" "" "" "" "" "" ""-------------------------"#
#color(white)"MMMMMMMMMMMMMM-"-25/27#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the degree of this remainder is smaller than the degree of our divisor, we will just divide it by the divisor as the last term in our answer:
#5/3x^2 - 16/9x - 52/27 -(25/27)/(3x-1)#
#5/3x^2 - 16/9x - 52/27 -25/(27(3x-1))#
Final Answer