How do you divide 5x37x24x+13x1?

1 Answer
Feb 4, 2018

Use long division.

53x2169x52272527(3x1)

Explanation:

(3x1) will go into (5x37x24x+1) a total of 53x2 times.

53x2(3x1)=(5x353x2)

This will leave a remainder of:

53x2
----------------------------
3x1 5x37x24x+1
(5x353x2)
--------------
163x2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So now we're left with 163x24x+1.

(3x1) will go into this 169x times.

169x(3x1)=(163x2+169x)

This will leave a remainder of:

53x2169x
----------------------------
3x1 5x37x24x+1
(5x353x2)
-----------------
163x24x+1
(163x2+169x)
-------------------------
529x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So now we're left with 529x+1.

(3x1) will go into this 5227 times.

5227(3x1)=(529x+5227)

This will leave a remainder of:

53x2169x5227
----------------------------
3x1 5x37x24x+1
(5x353x2)
-----------------
163x24x+1
(163x2+169x)
-------------------------
529x+1
(529x+5227)
-------------------------
MMMMMMMMMMMMMM-2527

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since the degree of this remainder is smaller than the degree of our divisor, we will just divide it by the divisor as the last term in our answer:

53x2169x522725273x1

53x2169x52272527(3x1)

Final Answer