What is DeMoivre's theorem?

1 Answer
Mar 5, 2018

DeMoivre's Theorem expand's on Euler's formula:
e^(ix)=cosx+isinx

DeMoivre's Theorem says that:

  • (e^(ix))^n=(cosx+isinx)^n
  • (e^(ix))^n=e^(i nx)
  • e^(i nx)=cos(nx)+isin(nx)
  • cos(nx)+isin(nx)-=(cosx+isinx)^n

Example:
cos(2x)+isin(2x)-=(cosx+isinx)^2

(cosx+isinx)^2=cos^2x+2icosxsinx+i^2sin^2x

However, i^2=-1

(cosx+isinx)^2=cos^2x+2icosxsinx-sin^2x

Resolving for real and imaginary parts of x:
cos^2x-sin^2x+i(2cosxsinx)

Comparing to cos(2x)+isin(2x)

cos(2x)=cos^2x-sin^2x
sin(2x)=2sinxcosx
These are the double angle formulae for cos and sin

This allows us to expand cos(nx) or sin(nx) in terms of powers of sinx and cosx

DeMoivre's theorem can be taken further:
Given z=cosx+isinx

z^n=cos(nx)+isin(nx)

z^(-n)=(cosx+isinx)^(-n)=1/(cos(nx)+isin(nx))

z^(-n)=1/(cos(nx)+isin(nx))xx(cos(nx)-isin(nx))/(cos(nx)-isin(nx))=(cos(nx)-isin(nx))/(cos^2(nx)+sin^2(nx))=cos(nx)-isin(nx)

z^n+z^(-n)=2cos(nx)
z^n-z^(-n)=2isin(nx)

So, if you wanted to express sin^nx in terms of multiple angles of sinx and cosx:
(2isinx)^n=(z-1/z)^n

Expand and simply, then input values for z^n+z^(-n) and z^n-z^(-n) where necessary.

However, if it involved cos^nx, then you would do (2cosx)^n=(z+1/z)^n and follow the similar steps.