According to Integration by Parts:
intuvdx∫uvdx, where uu and vv are functions, is given by:
uintvdx-intu'(intvdx)dx
Here, u=e^(3x) and v=sin(4x), so we can say:
inte^(3x)sin(4x)dx=e^(3x)intsin(4x)dx-int(d/dx(e^(3x)))(intsin(4x)dx)dx
Here, we must calculate, first:
intsin(4x)dx. According to Integration by Substitution:
intf(g(x))g'(x)dx=intf(u)du, where g(x)=u.
Here, g(x)=4x. The derivative of 4x is 4, so we can rewrite the integral as:
1/4intsin(u)du
=1/4(-cos(u)), but as u=4x, we input:
=-1/4cos(4x). We can input these into our original integral:
e^(3x)*-1/4cos(4x)-int(d/dx(e^(3x)))(-1/4cos(4x))dx
d/dxe^(3x)=3e^(3x), so we can rewrite:
-1/4e^(3x)cos(4x)-int-3/4e^(3x)cos(4x)dx
-1/4e^(3x)cos(4x)-(-3/4inte^(3x)cos(4x)dx)
Well, look at what we get. Integrate by parts again:
We'll concentrate on the integral.
e^(3x)intcos(4x)dx-int(d/dx(e^(3x)))(intcos(4x)dx)dx
intcos(4x)dx=1/4sin(4x), as we saw earlier. Do the exact same thing, but intcos(u)du=sin(u), while our other integral gave us -cos(u). So we now have:
1/4e^(3x)sin(4x)-int3/4e^(3x)sin(x)dx
1/4e^(3x)sin(4x)-3/4inte^(3x)sin(x)dx
We're back. A never ending loop, doesn't it seem like? But remember, altogether, we have:
-1/4e^(3x)cos(4x)-(-3/4(1/4e^(3x)sin(4x)-3/4inte^(3x)sin(x)dx))
3/4((e^(3x)sin(4x))/4-(3inte^(3x)sin(x)dx)/4)-(e^(3x)cos(4x))/4
(3e^(3x)sin(4x)-9inte^(3x)sin(x)dx-4e^(3x)cos(4x))/16
We really don't seem to be going anywhere with this. But remember, all of what we just wrote can be equated to inte^(3x)sin(4x)dx. So:
inte^(3x)sin(4x)dx=(3e^(3x)sin(4x)-9inte^(3x)sin(x)dx-4e^(3x)cos(4x))/16, or:
16inte^(3x)sin(4x)dx=3e^(3x)sin(4x)-9inte^(3x)sin(x)dx-4e^(3x)cos(4x)
We see two integrals of e^(3x)sin(4x)! A break! Simple algebra is all that's left to do.
16inte^(3x)sin(4x)dx+9inte^(3x)sin(4x)dx=3e^(3x)sin(4x)-4e^(3x)cos(4x)
25inte^(3x)sin(4x)dx=e^(3x)(3sin(4x)-4cos(4x))
And finally, we have:
inte^(3x)sin(4x)dx=1/25e^(3x)(3sin(4x)-4cos(4x))
Done. Hallelujah.