inte^(3x)sin(4x)dxe3xsin(4x)dx?

2 Answers
Mar 5, 2018

1/25e^(3x)(3sin(4x)-4cos(4x))+C125e3x(3sin(4x)4cos(4x))+C

Explanation:

According to Integration by Parts:

intuvdxuvdx, where uu and vv are functions, is given by:

uintvdx-intu'(intvdx)dx

Here, u=e^(3x) and v=sin(4x), so we can say:

inte^(3x)sin(4x)dx=e^(3x)intsin(4x)dx-int(d/dx(e^(3x)))(intsin(4x)dx)dx

Here, we must calculate, first:

intsin(4x)dx. According to Integration by Substitution:

intf(g(x))g'(x)dx=intf(u)du, where g(x)=u.

Here, g(x)=4x. The derivative of 4x is 4, so we can rewrite the integral as:

1/4intsin(u)du

=1/4(-cos(u)), but as u=4x, we input:

=-1/4cos(4x). We can input these into our original integral:

e^(3x)*-1/4cos(4x)-int(d/dx(e^(3x)))(-1/4cos(4x))dx

d/dxe^(3x)=3e^(3x), so we can rewrite:

-1/4e^(3x)cos(4x)-int-3/4e^(3x)cos(4x)dx

-1/4e^(3x)cos(4x)-(-3/4inte^(3x)cos(4x)dx)

Well, look at what we get. Integrate by parts again:

We'll concentrate on the integral.

e^(3x)intcos(4x)dx-int(d/dx(e^(3x)))(intcos(4x)dx)dx

intcos(4x)dx=1/4sin(4x), as we saw earlier. Do the exact same thing, but intcos(u)du=sin(u), while our other integral gave us -cos(u). So we now have:

1/4e^(3x)sin(4x)-int3/4e^(3x)sin(x)dx

1/4e^(3x)sin(4x)-3/4inte^(3x)sin(x)dx

We're back. A never ending loop, doesn't it seem like? But remember, altogether, we have:

-1/4e^(3x)cos(4x)-(-3/4(1/4e^(3x)sin(4x)-3/4inte^(3x)sin(x)dx))

3/4((e^(3x)sin(4x))/4-(3inte^(3x)sin(x)dx)/4)-(e^(3x)cos(4x))/4

(3e^(3x)sin(4x)-9inte^(3x)sin(x)dx-4e^(3x)cos(4x))/16

We really don't seem to be going anywhere with this. But remember, all of what we just wrote can be equated to inte^(3x)sin(4x)dx. So:

inte^(3x)sin(4x)dx=(3e^(3x)sin(4x)-9inte^(3x)sin(x)dx-4e^(3x)cos(4x))/16, or:

16inte^(3x)sin(4x)dx=3e^(3x)sin(4x)-9inte^(3x)sin(x)dx-4e^(3x)cos(4x)

We see two integrals of e^(3x)sin(4x)! A break! Simple algebra is all that's left to do.

16inte^(3x)sin(4x)dx+9inte^(3x)sin(4x)dx=3e^(3x)sin(4x)-4e^(3x)cos(4x)

25inte^(3x)sin(4x)dx=e^(3x)(3sin(4x)-4cos(4x))

And finally, we have:

inte^(3x)sin(4x)dx=1/25e^(3x)(3sin(4x)-4cos(4x))

Done. Hallelujah.

See below.

Explanation:

Using de Moivre's identity

e^(ix) = cos x + i sin x

int\ e^(3x)sin(4x)dx = "Im"[int\ e^(3x)(cos(4x)+isin(4x))dx]

but

int\ e^(3x)(cos(4x)+isin(4x))dx = int\ e^(3x)e^(i4x) dx = int\ e^((3+4i)x) dx = 1/(3+4i)e^((3+4i)x)

then

1/(3+4i)e^((3+4i)x) = (3-4i)/25e^(3x)(cos(4x)+i sin(4x)) =

= e^(3x)/25((3 cos(4x)+4 sin(4x))+i(3 sin(4x)-4 cos(4x)))

and finally

int\ e^(3x)sin(4x)dx =e^(3x)/25(3 sin(4x)-4 cos(4x))+C_0