What is the equation of the line with slope m= -31/36 that passes through (-5/6, 13/18) ?

2 Answers
Mar 9, 2018

216y+186x=1

Explanation:

Slope of a line (m) = (y_1-y_2)/(x_1-x_2) ----(1)

Here , m=-31/36

x_1=x

x_2=-5/6

y_1=y

y_2=13/18

Put these values in equation(1)

=> -31/36=(y-13/18)/(x-(-5/6))

=> -31/36 = ((18y-13)/cancel18^3)/((6x+5)/cancel6

=> -31/cancel36^12=(18y-13)/(cancel3(6x+5)

Cross-multiply

=> -31(6x+5)=12(18y-13)

=> -186x-155=216y-156

=> 156-155=216y+186x

=> 1=216y+186x

Mar 9, 2018

color(orange)(186x + 216y = 1

Explanation:

Given slope and a point on the line, we can write the equation using

(y - y_1 ) = m (x - x_1)

where m is the slope and (x_1, y_1) the coordinates of the point.

Hence the equation is

y - (13/18) = -(31/36) * (x + 5/6)

y = -(31/36)x - (31/36)*(5/6) + 13 / 18

y = [((-31*6 )x - (31*5) + (13 * 12)) / 216] L C M 216.

y = [(-186x - 155 + 156) / 216]

y = (-186x + 1) / 216

216y = -186x + 1

186x + 216y = 1