How do you differentiate ln(x+4+e^-3x)?

1 Answer
Mar 14, 2018

color(blue)((1-3e^(-3x))/(x+4+e^(-3x)))

Explanation:

If:

y=ln(x)<=>e^y=x

Using this definition for the given function:

e^y=x+4+e^(-3x)

Differentiating implicitly:

e^ydy/dx=1+0-3e^(-3x)

Dividing by: color(white)(88)bb(e^y)

dy/dx=(1-3e^(-3x))/e^y

From above:

e^y=x+4+e^(-3x)

:.

dy/dx=color(blue)((1-3e^(-3x))/(x+4+e^(-3x)))