How do you simplify #cosxtanx+sinxcotx#?
1 Answer
Mar 22, 2018
Explanation:
First, write everything in terms of sines and cosines.
#(cosx)(tanx) + (sinx)(cotx)#
#(cosx)(sinx/cosx) + (sinx)(cosx/sinx)#
#(cosx*sinx)/cosx + (sinx*cosx)/sinx#
Now, cancel out like terms in the numerator and denominator:
#(cancelcosx*sinx)/cancelcosx + (cancelsinx*cosx)/cancelsinx#
#sinx + cosx#
This is as simplified as the expression gets.
Final Answer