How do you multiply #(9k+q)(2k-q)#?

3 Answers
Mar 29, 2018

#18k^2 - 7kq - q^2#

Explanation:

To multiply two polynomials, simply multiply each term in the first parenthesis with each term in the second, and sum everything.
So, we have:

  • First element of first parenthesis times first element of second parenthesis: #9k * 2k = 18k^2#
  • Second element of first parenthesis times first element of second parenthesis: #q * 2k = 2kq#
  • First element of first parenthesis times second element of second parenthesis: #9k * -q = -9kq#
  • Second element of first parenthesis times second element of second parenthesis: #q * (-q) = -q^2#

Summing it up:

#18k^2 + 2kq - 9kq - q^2 = 18k^2 - 7kq - q^2#

Mar 29, 2018

Use FOIL methos (First,Outer,Inner,Last)

Explanation:

(9k+q)(2k-q)
(9k2k) + (9k-q2k) + (q-q)
=#18k^2#-9kq+2kq- #q^2#

Hope this helps!

Mar 29, 2018

#18k^2-q^2-7kq#

Explanation:

(9k+q)(2k-q)
=)#18k^2-q^2+2kq-9kq#
=)#18k^2-q^2-7kq#