How do you integrate ln(x^2+4)?

2 Answers

There is already a solution here

Solution

Apr 6, 2018

xln(x^2+4)-2x+4arc tan(x/2)+C.

Explanation:

We will use the following Rule of Integration by Parts :

intu*vdx=uintvdx-int{(du)/dx*intvdx}dx.

We take, u=ln(x^2+4) rArr (du)/dx=1/(x^2+4)*2x, and,

v=1 :. intvdx=x.

:. int{ln(x^2+4)*1}dx=xln(x^2+4)-int{(2x)/(x^2+4)*x}dx,

=xln(x^2+4)-2intx^2/(x^2+4)dx,

=xln(x^2+4)-2int{(x^2+4)-4}/(x^2+4)dx,

=xln(x^2+4)-2int{(x^2+4)/(x^2+4)-4/(x^2+4)}dx,

=xln(x^2+4)-2{intdx-4int1/(x^2+2^2)dx},

=xln(x^2+4)-2{x-4*1/2arc tan(x/2)},

=xln(x^2+4)-2x+4arc tan(x/2)+C.