What is the slope of the tangent line of #r=2theta^2-3thetacos(2theta-(pi)/3)# at #theta=(-5pi)/3#?

1 Answer
Apr 9, 2018

Derivative with Polar Coordinates is # (\partial x) / (\partial y) = ((\partial r) / (\partial theta) sin(theta)+ rcos(theta))/((\partial r) / (\partial theta) cos(theta)- rsin(theta)#

Explanation:

#(\partial r) / (\partial theta) = 4 theta-3*cos(2 theta-(pi)/(3))-3 theta*(-sin(2 theta - pi/3))*2=#
#=4 theta-3*cos(2 theta-(pi)/(3))+6 theta*(sin(2 theta - pi/3))#
The numerator:
# (\partial r) / (\partial theta)*sin(theta) = #
#=((4 theta-3*cos(2 theta-(pi)/(3))+6 theta*(sin(2 theta - pi/3)))*sin(theta)#
#r*cos(theta)=(2 theta^2-3 theta cos(2 theta-(pi)/3))*cos(theta)#

The denominator:
# (\partial r) / (\partial theta)*cos(theta) = #
#4 theta-3*cos(2 theta-(pi)/(3))+6 theta*(sin(2 theta - pi/3))*cos(theta)#
#r*sin(theta)=(2 theta^2-3 theta cos(2 theta-(pi)/3))*sin(theta)#
You are calculating the slope at #theta = -(5 pi)/3#, insert #theta = -(5 pi)/3# in the formulae above:

The numerator:
# (\partial r) / (\partial theta)*sin(theta) = -42.999#
#r*cos(theta)=31.343#

The denominator:
#(\partial r) / (\partial theta)*cos(theta) = -24.825#
#r*sin(theta)=54.287#

# (\partial x) / (\partial y)(theta=-(5 pi)/3)=#
#=(-42.999+31.343)/(-24.825-54.287)=0.15 #

For more click here.