(\partial r) / (\partial theta) = 4 theta-3*cos(2 theta-(pi)/(3))-3 theta*(-sin(2 theta - pi/3))*2=
=4 theta-3*cos(2 theta-(pi)/(3))+6 theta*(sin(2 theta - pi/3))
The numerator:
(\partial r) / (\partial theta)*sin(theta) =
=((4 theta-3*cos(2 theta-(pi)/(3))+6 theta*(sin(2 theta - pi/3)))*sin(theta)
r*cos(theta)=(2 theta^2-3 theta cos(2 theta-(pi)/3))*cos(theta)
The denominator:
(\partial r) / (\partial theta)*cos(theta) =
4 theta-3*cos(2 theta-(pi)/(3))+6 theta*(sin(2 theta - pi/3))*cos(theta)
r*sin(theta)=(2 theta^2-3 theta cos(2 theta-(pi)/3))*sin(theta)
You are calculating the slope at theta = -(5 pi)/3, insert theta = -(5 pi)/3 in the formulae above:
The numerator:
(\partial r) / (\partial theta)*sin(theta) = -42.999
r*cos(theta)=31.343
The denominator:
(\partial r) / (\partial theta)*cos(theta) = -24.825
r*sin(theta)=54.287
(\partial x) / (\partial y)(theta=-(5 pi)/3)=
=(-42.999+31.343)/(-24.825-54.287)=0.15
For more click here.