What is 6y+y^2=x^2 in polar form?

6y+y^2=x^2 in polar form.

I know the answer is r=(6sintheta)/(cos2theta)

but I do not know how to get there.

1 Answer
Apr 24, 2018

Put x=rcostheta and y=rsintheta

and use the property cos^2theta-sin^2theta=cos2theta

Explanation:

6y+y^2=x^2........................ (given equation)

Put x=rcostheta and y=rsintheta , we get :-

6rsintheta +r^2sin^2theta=r^2cos^2theta

rArr6rsintheta=r^2cos^2theta-r^2sin^2theta

rArr6rsintheta=r^2(cos^2theta-sin^2theta)

rArr6rsintheta=r^2cos2theta..............{cos^2theta-sin^2theta=cos2theta}

rArr6sintheta=rcos2theta

:.r=(6sintheta)/(cos2theta) is the Polar form of 6y+y^2=x^2