How do you evaluate log_49 343log49343?

2 Answers
May 25, 2018

log_49 343 = 3/2log49343=32

Explanation:

log_49 343log49343
=log_7(343)/log_7(49)=log7(343)log7(49)
=log_7(7^3)/log_7(7^2)=log7(73)log7(72)
=(3log_7(7))/(2log_7(7))=3log7(7)2log7(7)
=3/2=32

Alternatively, you could say 343 = 49 ^ (3/2)343=4932

The answer will follow immediately.

May 26, 2018

log_(49)343=3/2log49343=32

Explanation:

x=log_(49)343x=log49343

=>49^x=34349x=343

=>(7^2)^x=343(72)x=343

7^(2x)=34372x=343

but 7^3=34373=343

:.2x=3

=>x=3/2

log_(49)343=3/2