How do you divide #(-3x^4-4x^2+2x+15)/(x^2-x+4)#?

1 Answer
Jun 13, 2018

#-3x^2-3x-3+(7x+27)/(x^2-x+4)#

Explanation:

#(-3x^4-4x^2+2x+15)/(x^2-x+4)#

#color(white)(....)color(white)(.............)-3x^2-3x-3#
#x^2-x+4|overline(-3x^4+"00"-4x^2+2x+15)#
#color(white)(...................)ul(-3x^4+3x^3-4x^2)#
#color(white)(......................)-3x^3+"00"+2x#
#color(white)(........................)ul(-3x^3+3x^2-12x)#
#color(white)(..................................)-3x^2+10x+15#
#color(white)(....................................)ul(-3x^2+3x-12)#
#color(white)(................................................)7x+27#

#(-3x^4-4x^2+2x+15)/(x^2-x+4) = -3x^2-3x-3+(7x+27)/(x^2-x+4)#