How do use the discriminant test to determine whether the graph x^2+5xy+1-y^2-16=0 whether the graph is parabola, ellipse, or hyperbola?

1 Answer
Jul 20, 2018

It is a hyperbola.

Explanation:

Let the equation be of the type Ax^2+Bxy+Cy^2+Dx+Ey+F=0

then if

B^2-4AC=0 and A=0 or C=0, it is a parabola

B^2-4AC<0 and A=C, it is a circle

B^2-4AC<0 and A!=C, it is an ellipse

B^2-4AC>0, it is a hyperbola

In the given equation x^2+5xy+1-y^2-16=0 or x^2+5xy-y^2-15=0

A=1, B=5 and C=-1

Therefore, B^2-4AC=25+4=29

Hence, it is a hyperbola.

graph{x^2+5xy+1-y^2-16=0 [-20, 20, -10, 10]}