How do solve (2x)/(x-2)<=32xx23 algebraically?

2 Answers
Aug 6, 2018

Multiply both sides by x-2x2

2x<=3(x-2)2x3(x2)

Distribute the 3

2x<=3x-62x3x6

Move xx terms to one side

-x<=-6x6

Divide out negative one from both sides

x>=6x6

*When dividing or multiplying by a negative, you have to switch the greater or less than sign.

Aug 7, 2018

x in(-00,2)uu[6,oo)x(00,2)[6,)

Explanation:

"subtract 3 from both sides"subtract 3 from both sides

(2x)/(x-2)-3<=02xx230

"combine the left side as a single fraction"combine the left side as a single fraction

(2x)/(x-2)-(3(x-2))/(x-2)<=02xx23(x2)x20

(6-x)/(x-2)<=06xx20

"find the critical values of numerator/denominator"find the critical values of numerator/denominator

6-x=0rArrx=6larrcolor(blue)"is a zero"6x=0x=6is a zero

x-2=0rArrx=2x2=0x=2

"these values divide the domain into 3 intervals"these values divide the domain into 3 intervals

(-oo,2)uu(2,6]uu[6,oo)(,2)(2,6][6,)

"select a value for x as a "color(red)"test point in each interval"select a value for x as a test point in each interval

x=1to(6-1)/(1-2)=-5<0larrcolor(blue)"valid"x=16112=5<0valid

x=3to(6-3)/(3-2)=3>0larrcolor(blue)"not valid"x=36332=3>0not valid

x=10to(6-10)/(10-2)=-1/2<0larrcolor(blue)"valid"x=10610102=12<0valid

x in(-oo,2)uu[6,oo)x(,2)[6,)
graph{(2x)/(x-2)-3 [-10, 10, -5, 5]}