I=inttan(x)^3sec(x)^3dx
=inttan(x)tan(x)^2sec(x)^3dx
Because tan(x)^2=sec(x)^2-1
I=inttan(x)sec(x)^3(sec(x)^2-1)dx
=inttan(x)sec(x)^5dx-inttan(x)sec(x)^3dx
=-int(-sin(x))/(cos(x)^6)dx+int(-sin(x))/(cos(x)^4)dx
Let u=cos(x)
du=-sin(x)dx
So:
I=int1/u^4du-int1/u^6du
=1/(5u^5)-1/(3u^3)+C, C in RR
=1/(5cos(x)^5)-1/(3cos(x)^3)+C, C in RR
=1/5sec(x)^5-1/3sec(x)^3+C, C in RR