Question #ce067
↳Redirected from
"What is an example of an Ideal gas law practice problem?"
The momentum increases by 100 %.
Let initial kinetic energy be #K# and momentum be #p#.
#K = ½mv^2# (Equation 1)
If #K# increases by 300 %, it increases by a factor of #(300 %)/(100%) = 3#.
So the new kinetic energy is
#K' = K + 3K = 4K#
From Equation 1: #v = sqrt((2K)/m)#
The initial momentum #p = mv = m × sqrt((2K)/m) = sqrt(m^2 ×(2K)/m) = sqrt(2Km)#
The new momentum #p' = sqrt(2K'm)#
So #(p')/p = sqrt((2K'm)/(2Km))#
#(p')/p = sqrt((K')/K)#
#(p')/p= sqrt((4K)/K)#
#(p')/p = 2#
#p' = 2p#
% change = #(p' – p)/p × 100 % = (2p – p)/p × 100 % = 100 %#
% increase in momentum = 100%
#T = p^2/(2m)#
#p = sqrt(2mT)#
#(p_2 - p_1)/p_1 = (sqrt(2mT_2) - sqrt(2mT_1))/sqrt(2mT_1)#
#= (sqrt(color(red)(T_2)) - sqrt(T_1))/sqrt(T_1)#
#= (sqrt(color(red)(4 T_1)) - sqrt(T_1))/sqrt(T_1) = 1# or #100 "%"#