How do you begin from the Gibbs-Helmholtz equation to determine the new temperature at which a reaction ceases to become spontaneous? What fundamental assumptions are involved?
1 Answer
The Gibbs-Helmholtz equation at a chosen standard pressure (
((del(G^@//T))/(delT))_P = -H^@/T^2(∂(G∘/T)∂T)P=−H∘T2
To check spontaneity, one would need
The alternative version is:
((del(DeltaG^@//T))/(delT))_P = -(DeltaH^@)/T^2
Keeping in mind that this process is at constant pressure:
d(DeltaG^@//T) = -(DeltaH^@)/T^2dT
Integrating both sides, we get:
int_((1))^((2)) d(DeltaG^@//T) = -int_(T_1)^(T_2) (DeltaH^@)/T^2dT
Assuming that
(DeltaG^@(T_2))/T_2 - (DeltaG^@(T_1))/T_1 = DeltaH^@(P^@)[1/T_2 - 1/T_1]
A reaction is "no longer spontaneous" when it reaches equilibrium. For that scenario,
-(DeltaG^@(T_1))/(DeltaH^@)1/T_1 = 1/T_2 - 1/T_1
-(DeltaG^@(T_1))/(DeltaH^@)1/T_1 + 1/T_1 = 1/T_2
This becomes:
color(blue)(T_2) = [-(DeltaG^@(T_1))/(DeltaH^@)1/T_1 + 1/T_1]^(-1)
= [(1 - (DeltaG^@(T_1))/(DeltaH^@))1/T_1]^(-1)
= T_1/[1 - (DeltaG^@(T_1))/(DeltaH^@)]
= color(blue)((DeltaH^@T_1)/[DeltaH^@ - DeltaG^@(T_1)])
Or, if we use the relation that
color(blue)(T_2) = (DeltaH^@T_1)/[cancel(DeltaH^@ - DeltaH^@) + T_1DeltaS^@]
= color(blue)(DeltaH^@//DeltaS^@)
which should be a familiar result.