What is the derivative of x^(x^x) ?

1 Answer
Jan 22, 2016

d/(dx) x^(x^x) = x^(x^x + x - 1) (x ln^2(x) + x ln(x) + 1)

Explanation:

Use:

ln(a^b) = b ln(a)

d/(dx) e^x = e^x

Find:

x^(x^x)= e^(ln(x^(x^x)))

= e^(x^xln(x))

= e^(e^(ln(x^ x)) * ln(x))

= e^(e^(x ln(x)) * ln(x))

So:

d/(dx) x^(x^x) = d/(dx) e^(e^(x ln(x))*ln(x))

=e^(e^(x ln(x)) * ln(x)) * d/(dx)(e^(x ln(x)) * ln(x))

=x^(x^x) * d/(dx)(e^(x ln(x)) * ln(x))

=x^(x^x) * ((d/(dx) e^(x ln(x))) * ln(x) + e^(x ln(x)) * (d/(dx) ln(x)))

=x^(x^x) * (e^(x ln(x)) (d/(dx) (x ln(x))) * ln(x) + e^(x ln(x)) * 1/x)

=x^(x^x) * x^x * ((d/(dx) (x ln(x))) * ln(x) + 1/x)

=x^(x^x) * x^x * ((ln(x)+1) * ln(x) + 1/x)

=x^(x^x) * x^x * (ln^2(x) + ln(x) + 1/x)

=x^(x^x + x - 1) (x ln^2(x) + x ln(x) + 1)