What is the derivative of #x^(x^x)# ?

1 Answer
Jan 22, 2016

#d/(dx) x^(x^x) = x^(x^x + x - 1) (x ln^2(x) + x ln(x) + 1)#

Explanation:

Use:

#ln(a^b) = b ln(a)#

#d/(dx) e^x = e^x#

Find:

#x^(x^x)= e^(ln(x^(x^x)))#

#= e^(x^xln(x))#

#= e^(e^(ln(x^ x)) * ln(x))#

#= e^(e^(x ln(x)) * ln(x))#

So:

#d/(dx) x^(x^x) = d/(dx) e^(e^(x ln(x))*ln(x))#

#=e^(e^(x ln(x)) * ln(x)) * d/(dx)(e^(x ln(x)) * ln(x))#

#=x^(x^x) * d/(dx)(e^(x ln(x)) * ln(x))#

#=x^(x^x) * ((d/(dx) e^(x ln(x))) * ln(x) + e^(x ln(x)) * (d/(dx) ln(x)))#

#=x^(x^x) * (e^(x ln(x)) (d/(dx) (x ln(x))) * ln(x) + e^(x ln(x)) * 1/x)#

#=x^(x^x) * x^x * ((d/(dx) (x ln(x))) * ln(x) + 1/x)#

#=x^(x^x) * x^x * ((ln(x)+1) * ln(x) + 1/x)#

#=x^(x^x) * x^x * (ln^2(x) + ln(x) + 1/x)#

#=x^(x^x + x - 1) (x ln^2(x) + x ln(x) + 1)#