Question #b1be6
1 Answer
Explanation:
Your goal here is to find the equilibrium constant expressed in terms of partial pressures,
"C"_text((s]) + "CO"_text(2(g]) rightleftharpoons 2"CO"_text((g])" ", K_p = ?
by using the equilibrium constants for these equilibrium reactions
"C"_text((s]) + 2"H"_2"O"_text((g]) rightleftharpoons "CO"_text(2(g]) + 2"H"_text(2(g])" ", K_text(p1) = 3.65
"H"_text(2(g]) + "CO"_text(2(g]) rightleftharpoons "H"_2"O"_text((g]) + "CO"_text((g])" ", K_text(p2) = 0.633
In order to do that, you must find a way to express the first reaction in terms of the two reactions for which the equilibrium constant is known - think Hess' Law.
Notice that happens when you multiply the second reaction by
["H"_text(2(g]) + "CO"_text(2(g]) rightleftharpoons "H"_2"O"_text((g]) + "CO"_text((g])] xx color(blue)(2)
color(blue)(2)"H"_text(2(g]) + color(blue)(2)"CO"_text(2(g]) rightleftharpoons color(blue)(2)"H"_2"O"_text((g]) + color(blue)(2)"CO"_text((g])
The equilibrium constant for this reaction is equal to
K_(p2)^' = ( ("H"_2"O")^color(blue)(2) * ("CO")^color(blue)(2))/(("H"_2)^color(blue)(2) * ("CO"_2)^color(blue)(2))
But since the original reaction had
K_(2p) = (("H"_2"O") * ("CO"))/(("H"_2) * ("CO"_2))
you can say that
K_(2p)^' = [(("H"_2"O") * ("CO"))/(("H"_2) * ("CO"_2))]^color(blue)(2) = K_text(p2)^color(blue)(2)
Now notice what happens when you add this reaction and the first reaction
"C"_text((s]) + color(purple)(cancel(color(black)(2"H"_2"O"_text((g])))) rightleftharpoons "CO"_text(2(g]) + color(red)(cancel(color(black)(2"H"_text(2(g]))))
color(red)(cancel(color(black)(2"H"_text(2(g])))) + 2"CO"_text(2(g]) rightleftharpoons color(purple)(cancel(color(black)(2"H"_2"O"_text((g])))) + 2"CO"_text((g])
color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaa)/(color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)
"C"_text((s]) + 2"CO"_text(2(g]) rightleftharpoons "CO"_text(2(g]) + 2"CO"_text((g])
This is equivalent to
"C"_text((s]) + "CO"_text(2(g]) rightleftharpoons 2"CO"_text((g]) -> the target reaction
The equilibrium constant will be equal to
K_p = K_(p1) xx K_(p2)^'
K_p = K_(p1) xx K_(p2)^color(blue)(2)
K_p = 3.65 xx 0.633^2 = color(green)(1.46)
The answer is rounded to three sig figs.