Question #24fd5

1 Answer
Apr 20, 2017

pi/4.

Explanation:

Respected Eddie has suggested the Method to solve the

Problem.

Here is another way to Solve it.

For that, we need the following useful Result :

Result :int_0^a f(x)dx=int_0^af(a-x)dx; a>0, and, f" is cont. on "[0,a].

So, I=int_0^(pi/2)sin^2xdx......(1)

rArr I=int_0^(pi/2)sin^2(pi/2-x)dx=int_0^(pi/2)cos^2xdx......(2)

:., (1)+(2) rArr I+I=2I=int_0^(pi/2)(sin^2x+cos^2x)dx, i.e.,

2I=int_0^(pi/2)(1)dx=[x]_0^(pi/2)=pi/2

:. I=pi/4.

Enjoy Maths.!