Question #0372d
1 Answer
imaginary roots
Explanation:
Part A
color(orange)(f(x)=ax+1)
color(blue)(g(x)=x^2-3)
color(blue)(g[color(orange)(f(x))])=color(blue)((color(orange)(ax+1))^2-3)
color(blue)(g[color(orange)(f(x))])=color(blue)((color(orange)(ax+1))(color(orange)(ax+1))-3)
color(blue)(g[color(orange)(f(x))])=a^2x^2+2ax+1-3
color(blue)(g[color(orange)(f(x))])=color(teal)(a^2x^2)+color(purple)(2ax)-2
color(teal)(a^2x^2)=color(teal)(9x^2)color(white)(XXXXXXX)color(purple)(2ax)=color(purple)(6x)
a^2=(color(teal)(9x^2))/color(teal)(x^2)color(white)(XXXXXXXx)a=(color(purple)(6x))/(color(purple)(2x))
a^2=9color(white)(XXXXXXXXxx)a=3
a=+-3
color(purple)(2ax)=color(purple)(6x)
2(color(red)(-3))x=6x
-6x!=6xrArr"thus", color(green)(|bar(ul(color(white)(a/a)a=3color(white)(a/a)|)))
Part B
color(orange)(f[color(blue)(g(2))])=color(orange)(a(color(blue)(x^2-3))+1)
color(orange)(f[color(blue)(g(2))])=color(orange)(3(color(blue)((2)^2-3))+1)
color(orange)(f[color(blue)(g(2))])=3(4-3)+1
color(orange)(f[color(blue)(g(2))])=3(1)+1
color(green)(|bar(ul(color(white)(a/a)f[g(2)]=4color(white)(a/a)|)))
Part C
color(orange)(a(color(blue)(x^2-3))+1)=color(blue)((color(orange)(ax+1))^2-3)
color(orange)(a(color(blue)(x^2-3))+1)=color(blue)((color(orange)(ax+1))^2-3)
color(orange)(3(color(blue)(x^2-3))+1)=color(blue)((color(orange)(3x+1))^2-3)
3x^2-9+1=9x^2+6x+1-3
3x^2-8=9x^2+6x-2
6x^2+6x+6=0
x=(-b+-sqrt(b^2-4ac))/(2a)
x=(-(6)+-sqrt((6)^2-4(6)(6)))/(2(6))
x=(-6+-sqrt(36-144))/12
x=(-6+-sqrt(-108))/12
x=(-6+-6sqrt(3)i)/12
color(green)(|bar(ul(color(white)(a/a)x=(-1+-sqrt(3)i)/2color(white)(a/a)|)))rArr sincei=sqrt(-1) , roots are imaginary (not real)