Question #0372d

1 Answer
Mar 13, 2016

a=3
f[g(2)]=4
imaginary roots=(-1+-sqrt(3)i)/2

Explanation:

Part A
1. Given the following, substitute color(orange)(f(x)) into color(blue)x in color(blue)(g(x)).

color(orange)(f(x)=ax+1)

color(blue)(g(x)=x^2-3)

color(blue)(g[color(orange)(f(x))])=color(blue)((color(orange)(ax+1))^2-3)

2. Expand the equation and rewrite in standard form.

color(blue)(g[color(orange)(f(x))])=color(blue)((color(orange)(ax+1))(color(orange)(ax+1))-3)

color(blue)(g[color(orange)(f(x))])=a^2x^2+2ax+1-3

color(blue)(g[color(orange)(f(x))])=color(teal)(a^2x^2)+color(purple)(2ax)-2

3. Given that color(blue)(g[color(orange)(f(x))])=color(teal)(9x^2)+color(purple)(6x)-2, use the terms in this equation to solve for a.

color(teal)(a^2x^2)=color(teal)(9x^2)color(white)(XXXXXXX)color(purple)(2ax)=color(purple)(6x)

a^2=(color(teal)(9x^2))/color(teal)(x^2)color(white)(XXXXXXXx)a=(color(purple)(6x))/(color(purple)(2x))

a^2=9color(white)(XXXXXXXXxx)a=3

a=+-3

4. However, color(red)(a!=-3) because if color(red)(a=-3), then 2ax should equal 6x, but it doesn't.

color(purple)(2ax)=color(purple)(6x)

2(color(red)(-3))x=6x

-6x!=6xrArr"thus", color(green)(|bar(ul(color(white)(a/a)a=3color(white)(a/a)|)))

Part B
1. Substitute color(blue)(g(2)) into color(orange)x in color(orange)(f(x)).

color(orange)(f[color(blue)(g(2))])=color(orange)(a(color(blue)(x^2-3))+1)

2. Substitute color(orange)(a=3) and color(blue)(x=2) into the equation.

color(orange)(f[color(blue)(g(2))])=color(orange)(3(color(blue)((2)^2-3))+1)

3. Solve for color(orange)(f[color(blue)(g(2))]).

color(orange)(f[color(blue)(g(2))])=3(4-3)+1

color(orange)(f[color(blue)(g(2))])=3(1)+1

color(green)(|bar(ul(color(white)(a/a)f[g(2)]=4color(white)(a/a)|)))

Part C
1. To show that color(orange)(f[color(blue)(g(x))])=color(blue)(g[color(orange)(f(x))]) has no real solution, set color(orange)(a(color(blue)(x^2-3))+1) to equal color(blue)((color(orange)(ax+1))^2-3) or color(brown)(9x^2+6x-2). Either way would work, but in this case, we will use color(blue)((color(orange)(ax+1))^2-3).

color(orange)(a(color(blue)(x^2-3))+1)=color(blue)((color(orange)(ax+1))^2-3)

2. Substitute a=3.

color(orange)(a(color(blue)(x^2-3))+1)=color(blue)((color(orange)(ax+1))^2-3)

color(orange)(3(color(blue)(x^2-3))+1)=color(blue)((color(orange)(3x+1))^2-3)

3. Expand the brackets and rewrite the equation in standard form.

3x^2-9+1=9x^2+6x+1-3

3x^2-8=9x^2+6x-2

6x^2+6x+6=0

4. Using the quadratic formula, solve for x.

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-(6)+-sqrt((6)^2-4(6)(6)))/(2(6))

x=(-6+-sqrt(36-144))/12

x=(-6+-sqrt(-108))/12

x=(-6+-6sqrt(3)i)/12

color(green)(|bar(ul(color(white)(a/a)x=(-1+-sqrt(3)i)/2color(white)(a/a)|)))rArrsince i=sqrt(-1), roots are imaginary (not real)