How do you differentiate #sqrt(cos(x))# by first principles?
1 Answer
Explanation:
Let
Then:
#(f(x+h)-f(x))/h = (sqrt(cos(x+h))-sqrt(cos(x)))/h#
#color(white)((f(x+h)-f(x))/h) = ((sqrt(cos(x+h))-sqrt(cos(x)))(sqrt(cos(x+h))+sqrt(cos(x))))/(h(sqrt(cos(x+h))+sqrt(cos(x))))#
#color(white)((f(x+h)-f(x))/h) = (cos(x+h)-cos(x))/(h(sqrt(cos(x+h))+sqrt(cos(x))))#
#color(white)((f(x+h)-f(x))/h) = ((cos(x)cos(h)-sin(x)sin(h))-cos(x))/(h(sqrt(cos(x+h))+sqrt(cos(x))))#
#color(white)((f(x+h)-f(x))/h) = (cos(x)(cos(h)-1)-sin(x)sin(h))/(h(sqrt(cos(x+h))+sqrt(cos(x))))#
Now:
#cos t = 1/(0!) - t^2/(2!) + O(t^4)#
So:
#(cos t - 1)/t = -t/(2!) + O(t^3)#
And:
#lim_(t->0) ((cos t - 1)/t) = 0#
Also:
#sin t = t/(1!) - O(t^3)#
So:
#sin t/t = 1 - O(t^2)#
And:
#lim_(t->0) (sin t/t) = 1#
So we find:
#lim_(h->0) (cos(x)(cos(h)-1)-sin(x)sin(h))/(h(sqrt(cos(x+h))+sqrt(cos(x))))#
#=lim_(h->0) (((cos(h)-1)/h*cos(x))-(sin(h)/h*sin(x)))/(sqrt(cos(x+h))+sqrt(cos(x)))#
#=((0*cos(x))-(1*sin(x)))/(sqrt(cos(x))+sqrt(cos(x)))#
#=-sin(x)/(2sqrt(cos(x)))#
That is:
#d/(dx) sqrt(cos(x)) = -sin(x)/(2sqrt(cos(x)))#