Question #017cf

1 Answer
Nov 16, 2016

sin3xcos2xdx=cos5x5cos3x3+C

Explanation:

sin3xcos2xdx=sinxsin2xcos2xdx

=sinx(1cos2x)cos2xdx

=sinx(cos2xcos4x)dx

Let u=cosxdu=sinxdx

sinx(cos2xcos4x)dx

=(cos4xcos2x)(sinx)dx

=(u4u2)du

=u55u33+C

=cos5x5cos3x3+C