Question #017cf

1 Answer
Nov 16, 2016

intsin^3xcos^2xdx=cos^5x/5-cos^3x/3 + C

Explanation:

intsin^3xcos^2xdx = intsinxsin^2xcos^2xdx

=intsinx(1-cos^2x)cos^2xdx

=intsinx(cos^2x-cos^4x)dx

Let u = cosx => du = -sinxdx

=> intsinx(cos^2x-cos^4x)dx

= int(cos^4x-cos^2x)(-sinx)dx

=int(u^4-u^2)du

=u^5/5-u^3/3 + C

=cos^5x/5-cos^3x/3 + C