How do you simplify (p+q*omega+r*omega^2)/(r+p*omega+q*omega^2)p+qω+rω2r+pω+qω2 ?

1 Answer
Mar 20, 2016

See explanation...

Explanation:

omega = -1/2+sqrt(3)/2iω=12+32i is the primitive Complex cube root of 11.

So omega^3 = 1ω3=1 and omega^4 = omegaω4=ω

(p+q*omega+r*omega^2)/(r+p*omega+q*omega^2)p+qω+rω2r+pω+qω2

=(p*omega^3+q*omega^4+r*omega^2)/(r+p*omega+q*omega^2)=pω3+qω4+rω2r+pω+qω2

=(r*omega^2+p*omega^3+q*omega^4)/(r+p*omega+q*omega^2)=rω2+pω3+qω4r+pω+qω2

=(color(red)(cancel(color(black)((r+p*omega+q*omega^2))))omega^2)/color(red)(cancel(color(black)((r+p*omega+q*omega^2))))

=omega^2