Question #cb563

1 Answer
Jun 10, 2017

I got about 17.25, and Wolfram Alpha also does.


DISCLAIMER: LONG ANSWER!

The surface area is given by:

S = 2pi int_(a)^(b) f(x)sqrt(1 + ((dy)/(dx))^2)dx

With f(x) = sinx, f'(x) = cosx, so

S = 2pi int_(0)^(4) sinxsqrt(1 + cos^2x)dx.

But since the graph passes through the x axis at x = 0,pi in [0,4]...

graph{y = sinx * sqrt(1 + (cosx)^2) [-0.396, 4.47, -1.087, 1.347]}

...we'll split this integral into two parts.

S = S_1 + S_2

= 2pi int_(0)^(pi) sinxsqrt(1 + cos^2x)dx + 2pi int_(pi)^(4) sinxsqrt(1 + cos^2x)dx

Let:

u = cosx
du = -sinxdx

This gives:

S_i = -2pi int sqrt(1 + u^2)du

One more substitution. This is of the form sqrt(a^2 + u^2), so let:

u = tantheta
du = sec^2thetad theta
sqrt(1 + u^2) = sqrt(1 + tan^2theta) = sectheta

Therefore:

S_i = -2pi int sec^3thetad theta

If you do not know this integral, I have it here:


color(green)(intsec^3tdt)

Let:

u = sect
dv = sec^2tdt
du = sect tantdt
v = tant

= sect tant - intsect tan^2tdt

= sect tant - intsect(sec^2t - 1)dx

= sect tant - intsec^3tdt + int sectdt

2int sec^3tdt = sect tant + int sectdt

int sec^3tdt = 1/2(sect tant + ln|sect+tant|) + C


So, what we have is:

S_i = -cancel(2)pi [1/cancel(2) (secthetatantheta + ln|sectheta + tantheta|)]

Back-substitution gives:

= -pi [sqrt(1 + u^2)cdotu + ln|sqrt(1 + u^2) + u|]

= -pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|

Evaluating from x = 0 to pi:

color(green)(S_1) = |[-pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|]|_(0)^(pi)

= [-pi cospisqrt(1 + cos^2 pi) - piln|sqrt(1 + cos^2 pi) + cospi|] - [-pi cos0sqrt(1 + cos^2 0) - piln|sqrt(1 + cos^2 0) + cos0|]

= [pi sqrt(2) - piln|sqrt(2) - 1|] - [-pi sqrt(2) - piln|sqrt(2) + 1|]

= 2pi sqrt(2) - piln|sqrt(2) - 1| + piln|sqrt(2) + 1|

= color(green)(2pi sqrt(2) - piln|(sqrt(2) - 1)/(sqrt(2) + 1)|

This is approximately 14.44.

Finally, evaluating from x=pi to x=4:

color(green)(S_2) = |[-pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|]|_(pi)^(4)

= [-pi cos4sqrt(1 + cos^2 4) - piln|sqrt(1 + cos^2 4) + cos4|] - [-pi cospisqrt(1 + cos^2 pi) - piln|sqrt(1 + cos^2 pi) + cospi|]

= [-pi cos4sqrt(1 + cos^2 4) - piln|sqrt(1 + cos^2 4) + cos4|] - [pi sqrt(2) - piln|sqrt(2) - 1|]

= -pi cos4sqrt(1 + cos^2 4) - pi sqrt(2) - piln|sqrt(1 + cos^2 4) + cos4| + piln|sqrt(2) - 1|

= color(green)(-pi (cos4sqrt(1 + cos^2 4) + sqrt2) - pi ln|(sqrt(1 + cos^2 4) + cos4)/(sqrt(2) - 1)|)

This value is around -2.83, but surface area is nonnegative, so we take the absolute value to get 2.83.

Therefore, the total surface area should be:

color(blue)(S) = 2pi sqrt(2) - piln|(sqrt(2) - 1)/(sqrt(2) + 1)| + pi (cos4sqrt(1 + cos^2 4) + sqrt2) + pi ln|(sqrt(1 + cos^2 4) + cos4)/(sqrt(2) - 1)|

or about color(blue)(17.25).