Question #cb563
1 Answer
I got about
DISCLAIMER: LONG ANSWER!
The surface area is given by:
S = 2pi int_(a)^(b) f(x)sqrt(1 + ((dy)/(dx))^2)dx
With
S = 2pi int_(0)^(4) sinxsqrt(1 + cos^2x)dx .
But since the graph passes through the
graph{y = sinx * sqrt(1 + (cosx)^2) [-0.396, 4.47, -1.087, 1.347]}
...we'll split this integral into two parts.
S = S_1 + S_2
= 2pi int_(0)^(pi) sinxsqrt(1 + cos^2x)dx + 2pi int_(pi)^(4) sinxsqrt(1 + cos^2x)dx
Let:
u = cosx
du = -sinxdx
This gives:
S_i = -2pi int sqrt(1 + u^2)du
One more substitution. This is of the form
u = tantheta
du = sec^2thetad theta
sqrt(1 + u^2) = sqrt(1 + tan^2theta) = sectheta
Therefore:
S_i = -2pi int sec^3thetad theta
If you do not know this integral, I have it here:
Let:
u = sect
dv = sec^2tdt
du = sect tantdt
v = tant
= sect tant - intsect tan^2tdt
= sect tant - intsect(sec^2t - 1)dx
= sect tant - intsec^3tdt + int sectdt
2int sec^3tdt = sect tant + int sectdt
int sec^3tdt = 1/2(sect tant + ln|sect+tant|) + C
So, what we have is:
S_i = -cancel(2)pi [1/cancel(2) (secthetatantheta + ln|sectheta + tantheta|)]
Back-substitution gives:
= -pi [sqrt(1 + u^2)cdotu + ln|sqrt(1 + u^2) + u|]
= -pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|
Evaluating from
color(green)(S_1) = |[-pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|]|_(0)^(pi)
= [-pi cospisqrt(1 + cos^2 pi) - piln|sqrt(1 + cos^2 pi) + cospi|] - [-pi cos0sqrt(1 + cos^2 0) - piln|sqrt(1 + cos^2 0) + cos0|]
= [pi sqrt(2) - piln|sqrt(2) - 1|] - [-pi sqrt(2) - piln|sqrt(2) + 1|]
= 2pi sqrt(2) - piln|sqrt(2) - 1| + piln|sqrt(2) + 1|
= color(green)(2pi sqrt(2) - piln|(sqrt(2) - 1)/(sqrt(2) + 1)|
This is approximately
Finally, evaluating from
color(green)(S_2) = |[-pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|]|_(pi)^(4)
= [-pi cos4sqrt(1 + cos^2 4) - piln|sqrt(1 + cos^2 4) + cos4|] - [-pi cospisqrt(1 + cos^2 pi) - piln|sqrt(1 + cos^2 pi) + cospi|]
= [-pi cos4sqrt(1 + cos^2 4) - piln|sqrt(1 + cos^2 4) + cos4|] - [pi sqrt(2) - piln|sqrt(2) - 1|]
= -pi cos4sqrt(1 + cos^2 4) - pi sqrt(2) - piln|sqrt(1 + cos^2 4) + cos4| + piln|sqrt(2) - 1|
= color(green)(-pi (cos4sqrt(1 + cos^2 4) + sqrt2) - pi ln|(sqrt(1 + cos^2 4) + cos4)/(sqrt(2) - 1)|)
This value is around
Therefore, the total surface area should be:
color(blue)(S) = 2pi sqrt(2) - piln|(sqrt(2) - 1)/(sqrt(2) + 1)| + pi (cos4sqrt(1 + cos^2 4) + sqrt2) + pi ln|(sqrt(1 + cos^2 4) + cos4)/(sqrt(2) - 1)|
or about