Question #efd04

1 Answer
Feb 26, 2017

Begin by finding the restrictions on the domain

5+x>=0 and 3-x>=05+x0and3x0

Simplify

x>=-5 and -x>=-3x5andx3

x>=-5 and x<=3x5andx3

-5<=x<=35x3

Append the restrictions to the original equation:

sqrt(5+x)-sqrt(3-x)=2;-5<=x<=35+x3x=2;5x3

Square both sides:

(sqrt(5+x)-(sqrt(3-x))^2=2^2;-5<=x<=3(5+x(3x)2=22;5x3

Expanding the square of the left side may appear to be a bit daunting but the pattern, (a-b)^2 = a^2-2ab+b^2(ab)2=a22ab+b2, makes it quite simple:

Let a = sqrt(5+x) and b = sqrt(3-x)a=5+xandb=3x, then a^2=5+x,b^2=3-x, and -2ab=-2sqrt((3-x)(5+x))a2=5+x,b2=3x,and2ab=2(3x)(5+x)

5+x -2sqrt((3-x)(5+x)) + 3-x=4;-5<=x<=35+x2(3x)(5+x)+3x=4;5x3

Collect everything but the radical term to one side:

-2sqrt((3-x)(5+x)) = -4;-5<=x<=32(3x)(5+x)=4;5x3

Divide both sides by -2:

sqrt((3-x)(5+x)) = 2;-5<=x<=3(3x)(5+x)=2;5x3

Square both sides:

(3-x)(5+x)=4;-5<=x<=3(3x)(5+x)=4;5x3

Expand the left side, using the F.O.I.L. method:

15+3x-5x-x^2=4;-5<=x<=315+3x5xx2=4;5x3

Combine like terms

11-2x-x^2=0;-5<=x<=3112xx2=0;5x3

Multiply both side by -1:

x^2+2x-11=0;-5<=x<=3x2+2x11=0;5x3

Check the discriminant:

d=b^2-4(a)(c) = 2^2-4(1)(-11)=4+44=48d=b24(a)(c)=224(1)(11)=4+44=48

Using the quadratic formula:

x = (-b+-sqrt(d))/(2a)x=b±d2a

x = (-2+-sqrt(48))/2x=2±482

x = -1+-sqrt(12)x=1±12

x = -1+-2sqrt(3)x=1±23

If you substitute the negative root into the original equation you obtain, -2=22=2, which indicates an extraneous root caused by squaring; therefore, it must be discarded:

x = 2sqrt(3)-1x=231 is the only solution.