Question #4ef82

1 Answer
Feb 5, 2018

slideplayer.com

It is revealed from the above figure that surface area of the cyndrical solid with a conical cavity will be

A=2πrh+πrl+πr2

A=πr(2h+l+r)

Given
Total surface area of the solid A=904.32dm2
Height of the solid h=16dm

Radius r=6dm

Density ρ=7.5g/cm3=7.5kg/dm3

The slant height (l) of the cone is not known.

So
904.32=3.14×6(2×16+l+6)

l+38=904.323.14×6=48

l=4838=10dm

So height of the conical cavity will be

hcone=l2r2

hcone=10262=8dm

Now volume of the solid

V=volume of cylindervolume of cavity

=πr2h13πr2hcone

=πr2(hhcone3)

So weight (mass) of the solid will be

W=V×ρ

W=V×ρ=πr2(hhcone3)ρ

W=3.14×62(1683)×7.5kg

W=3.14×36×403×7.5kg=11304kg