Let f_n(x) = sum_(r=1)^n \ sin^2(x)/(cos^2(x/2)-cos^2(( (2r+1)x)/2) ) and g_n(x) = prod_(k=1)^n f_k(x) . If I_n=int_0^pi (f_n(x))/(g_n(x)) dx show that sum_(k=1)^n I_k = Kpi, and find K?

3 Answers
Feb 17, 2017

I would love to see your answer. Did you make use of Lagrange Trigonometric identity?

Feb 17, 2017

This is Lagrange's trigonometric identity 1 + cos(x) + cos(2x) + ... = 1/2 + \frac{\sin\frac{(2n+1)x}{2}}{2 \sin \frac{x}{2}}

Feb 17, 2017

K=1

Explanation:

Firstly poor notation for the summation and product. The standard notation is to use a "dummy" variable, usually i or r as the loop counter, as in

sum_(r=1)^n r = 1/2n(n+1)

So using the correct notation we have:

f_n(x) = sum_(r=1)^n \ sin^2(x)/(cos^2(x/2)-cos^2(( (2r+1)x)/2) )

If we focus in the denominator for a moment, which desperately needs simplification, we see that it is the difference of two squares, so we can factorise prior to simplifying, and we can use the identities:

cos(A)+cos(B) = \ \ \ \ 2cos((​A+B)/2​​ )cos((​A−B)/2​​ )
cos(A) - cos(B) = -2 sin((​A+B)/2​​ )sin((​A−B)/2​​ )
sin2A=2sinAcosA

to get;

cos^2(x/2)-cos^2(( (2r+1)x)/2)
\ \ \ = cos^2(x/2)-cos^2( rx + x/2)
\ \ \ = (cos(x/2)-cos( rx + x/2) )( cos(x/2)-cos( rx + x/2) )
\ \ \ = 2cos((rx+x)/2)cos((-rx)/2)(-2)sin((rx+x)/2)sin((-rx)/2)
\ \ \ = 2cos((rx+x)/2)cos((rx)/2)(-2)sin((rx+x)/2)(-sin((rx)/2))
\ \ \ = {2sin((rx)/2)cos((rx)/2) }{2sin((rx+x)/2)cos((rx+x)/2)}
\ \ \ = sin((2rx)/2)sin((2(rx+x))/2)
\ \ \ = sin(rx)sin((r+1)x)

So we can therefore write f_n(x) as:

f_n(x) = sum_(r=1)^n \ sin^2(x)/( sin(rx)sin((r+1)x) )

Let us examine the first few expansions of f and g

f_1(x) = sin^2(x)/( sin(x)sin(2x) )
f_2(x) = sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) )
f_2(x) = sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) ) + sin^2(x)/( sin(3x)sin(4x) )

And we have:

g_n(x) = prod_(r=1)^n \ f_n(x)

Ad so:

g_1(x) = f_1(x)
\ \ \ \ \ \ \ \ = sin^2(x)/( sin(x)sin(2x) )

g_2(x) = f_1(x) * f_2(x)
\ \ \ \ \ \ \ \ = (sin^2(x)/( sin(x)sin(2x) ) ) (sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) ))

g_3(x) = f_1(x) * f_2(x) * f_3(x)
\ \ \ \ \ \ \ \ = (sin^2(x)/( sin(x)sin(2x) ) ) (sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) )) (sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) ) + sin^2(x)/( sin(3x)sin(4x) ))

So using the definition of I_n:

I_n = int_0^pi \ f_n(x)/g_n(x) \ dx

We have:

I_1 = int_0^pi \ f_1(x) / g_1(x) \ dx
\ \ \ = int_0^pi \ {sin^2(x)/( sin(x)sin(2x) )} / {sin^2(x)/( sin(x)sin(2x) )} \ dx
\ \ \ = int_0^pi \ dx
\ \ \ = [x]_0^pi
\ \ \ = pi

So if sum_(r=1)^n \ I_r = K pi then;

n=1 => I_1 = Kpi
\ \ \ \ \ \ \ \ \ \=> pi = Kpi
\ \ \ \ \ \ \ \ \ \=> K=1

Let's see if this holds with n=2, if so then perhaps we can prove the proposition by Induction.

I_2 = int_0^pi \ f_2(x) / g_2(x) \ dx
\ \ \ = int_0^pi \ {sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) )} / {(sin^2(x)/( sin(x)sin(2x) ) ) (sin^2(x)/( sin(x)sin(2x) ) + sin^2(x)/( sin(2x)sin(3x) ))} \ dx
\ \ \ = int_0^pi 1/ {sin^2(x)/( sin(x)sin(2x) )} \ dx
\ \ \ = int_0^pi ( sin(x)sin(2x) )/sin^2(x) \ dx
\ \ \ = int_0^pi ( sin(x)2sinxcosx )/sin^2(x) \ dx
\ \ \ = int_0^pi 2cosx \ dx
\ \ \ = 2 \ [sinx]_0^pi \ dx
\ \ \ = 2 \ (sinpi-sin0)
\ \ \ = 0

So if sum_(r=1)^n \ I_r = K pi then;

n=2 => I_1 + I_2 = Kpi
\ \ \ \ \ \ \ \ \ \=> pi + 0 = Kpi
\ \ \ \ \ \ \ \ \ \=> K=1 , consistent with the above case n=1

I think it's fairly easy to see that I_k=0 AA k ge 2, and if I have a bit more time later I will attempt to prove that by Induction.