Question #8c23f

2 Answers
Jun 4, 2016

As below

Explanation:

self drawn
Given
ABCD is an Isosceles trapezium
Length of its minor base #AB=10 cm#
#sinD=3/4#
The diagonal DB bisects #/_ADC#

ABCD being an Isosceles trapezium
#/_ADC=/_BCD#

If we draw a line BE parallel to AD and it intersects DC at E, then quadrilateral ABED will have #DA||BE" ""by construction"#
and
#AB||ED#
being two parallel sides of a trapezium.
So ABDE is a parallelogram.
Now by given condition diagonal
DB bisects#/_ADE#,
Hence #/_ADB=/_BDE#
Again #/_BDE="alternate"/_ABD#
#:.In DeltaABD,/_ABD=/_ADB#
This implies AD=AB=10cm

So ABED must be a rhombus

So BE=AB =BC=10cm=AD=DE

Now
#Sin /_ADF=h/"AD"=>3/4=h/10=>h=7.5cm#

# :. **Height** (h)=7.5cm#

#DP=sqrt(AD^2-AF^2)=sqrt(10^2-7.5^2)~~6.6cm#

so #CQ=DP =6.6cm#

ABQP being a rectangle

#PQ =AB =10 cm#

Area of #Delta ADP=1/2xxAPxxDP=1/2xx6.6xx7.5=24.75 "cm"^2#

Similarly Area of #Delta BQC=24.75 "cm"^2#

Area of rectangle #ABQP=10xx7.5cm^2=75cm^2#

So
Area of the Trapezium

#2xxDelta ABP+ "rectangle"ABQP=2xx24.75+75=124.5cm^2#

Perimeter of the Trapezium

#DA + AB + BC+2xxQC+PQ=(10+10+10+2xx6.6+10)cm=53.2cm#

Angles
#/_ADC=/_BCD=sin^-1 (3/4)=48.6^@#

#/_DAB=/_CBA=(180-48.6)=131.4^@#

Jun 6, 2016

#angle A=angleB=131.4^@and angleC=angle D=48.6^@ #, all rounded to one decimal place
Perimeter #approx53.2cm#
Area #approx124.6cm^2#

Explanation:

my computer (Not to Scale)
#ABCD# is given Isosceles trapezium with short base #AB=10 cm#.
Angle #D# is the vertex angle and diagonal #DB # bisects it.
#=> angleADB=angleBDC#
Now #DC and AB# are #||# and #DB# is transversal.
#=> angle BDC=angleABD#, alternate interior angles
#=>Delta ADB# is isosceles triangle with #angle A# as vertex
#=>AB=AD=10cm#
Similarly due to symmetry property of Isosceles trapezium side #BC=10cm#

Draw #AE# ⊥ from #A# on side #DC#
#AE=BF=h#
Given #sin D=3/4#, in #DeltaDEA#
#=>sin D=h/10=3/4#, solving for #h#
#h=3/4xx10=7.5cm#
Using Pythagoras theorem
#DE=sqrt(10^2-7.5^2)approx6.61cm#

  1. #angle D= sin^-1 (3/4)=48.6^@#
    As # DC and AB# are #||# and #DA# is transversal, #=>angles A and D# are supplementary angles.
    #:. angle A=180-48.6=131.4^@#,
    As the base angles of an isosceles trapezium are equal, #=>angleC=angle D=48.6^@ and angle B=angle A=131.4^@#, all rounded to one decimal place.

  2. Perimeter of the Isosceles trapezium#=AB+BC+CF+FE+ED+AD#
    #=4xx10+2xx6.61approx53.2cm#

  3. Area of the Isosceles trapezium#=#
    Area of rectangle #AEFB+2xx#Area of #DeltaADE#
    (#Deltas ADE and BFC# are congruent)
    or Area of the Isosceles trapezium #=10xx7.5+2xx1/2xx6.61xx7.5approx124.6cm^2#