Question #c7b2b

2 Answers
Mar 12, 2017

The remainder is #=-3# and the quotient is #=3y^2-7#

Explanation:

You can perform a long division

#color(white)(aaaa)##15y^3-27y^2-35y+60##color(white)(aaaa)##|##5y-9#

#color(white)(aaaa)##15y^3-27y^2##color(white)(aaaaaaaaaaaaaa)##|##3y^2-7#

#color(white)(aaaaaaaa)##0-0-35y+60#

#color(white)(aaaaaaaaaaaaa)##-35y+63#

#color(white)(aaaaaaaaaaaaaaaaa)##0-3#

The remainder is #=-3# and the quotient is #=3y^2-7#

You can check by doing a multiplication

#15y^3-27y^2-35y+60=(5y-9)(3y^2-7)-3#

Mar 12, 2017

#y^2+18/5y-13/25+1383/(125y-225)#

Same as:

#y^2+18/5y-13/25+1383/(25(5y-9))#

Explanation:

Given#" "(5y^3-27y^2-35y+60)-:(5y-9)#

#" "5y^3-27y^2-35y+60#
#color(magenta)(y^2)(5y-9)->" "ul(5y^3-9y^2) larr" Subtract"#
#" "0-18y^2-35y+60 #
#color(magenta)(18/5y)(5y-9)->" "ul(color(white)(.)18y^2-162/5y) larr" Subtract"#
#" "0-color(white)(.)13/5y+60#
#color(magenta)(-13/25)(5y-9)->" "ul(-13/5y+117/25) larr" Subtract"#
#color(magenta)(" Remainder "->+1383/25)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(magenta)(y^2+18/5y-13/25+(1383/25 -:(5y-9)))#

#y^2+18/5y-13/25+1383/(125y-225)#