Prove that tan(pi/4+A/2)=secA+tanA?

1 Answer
May 3, 2016

Please see below.

Explanation:

Let us start from Right Hand Side

tan(pi/4+A/2)

= (tan(pi/4)+tan(A/2))/(1-tan((pi)/4)tan(A/2)

= (1+tan(A/2))/(1-1*tan(A/2)

= (1+sin(A/2)/cos(A/2))/(1-sin(A/2)/cos(A/2)

= (cos(A/2)+sin(A/2))/(cos(A/2)-sin(A/2))

= (cos(A/2)+sin(A/2))/(cos(A/2)-sin(A/2))xx(cos(A/2)+sin(A/2))/(cos(A/2)+sin(A/2))

= (cos(A/2)+sin(A/2))^2/(cos^2(A/2)-sin^2(A/2))

= (cos^2(A/2)+sin^2(A/2)+2sin(A/2)cos(A/2))/cosA

= (1+sinA)/cosA

= 1/cosA+sinA/cosA

= secA+tanA