Question #f8601

1 Answer
May 3, 2016

RHS=LHS proves the identity

Explanation:

To prove the identity, it may be simpler to start with RHS.

RHS= (tan(pi/4)+tan(A/2))/(1-tan(pi/4)tan(A/2))tan(π4)+tan(A2)1tan(π4)tan(A2) =(1+tan(A/2))/(1-tan(A/2)1+tan(A2)1tan(A2)

= (cos(A/2)+sin (A/2))/(cos (A/2)- sin(A/2))cos(A2)+sin(A2)cos(A2)sin(A2) =(cos(A/2)+sin (A/2))/(cos (A/2)- sin(A/2))* (cos(A/2)+sin (A/2))/(cos (A/2)+ sin(A/2))cos(A2)+sin(A2)cos(A2)sin(A2)cos(A2)+sin(A2)cos(A2)+sin(A2)

=(cos^2 (A/2) +sin^2 (A/2) +2sin(A/2) cos( A/2))/(cos^2 (A/2) - sin^2 (A/2))cos2(A2)+sin2(A2)+2sin(A2)cos(A2)cos2(A2)sin2(A2)

=(1+sinA)/cosA = secA +tan A= LHS=1+sinAcosA=secA+tanA=LHS