Question #a9813

2 Answers
May 10, 2016

E=E_x=-12 V/mE=Ex=12Vm

Explanation:

"given: "V=3x^2given: V=3x2

E_x=-(d V)/(d x)Ex=dVdx

E_y=0Ey=0

E_z=0Ez=0

E_x=-(d(3x^2))/(d x)Ex=d(3x2)dx

E_x=-6xEx=6x

P=(color(green)(2),cancel(0),cancel(1))

E_x=-6*2

E_x=-12

E=E_x=-12 V/m

May 12, 2016

-12hatiV/m

Explanation:

Potentoal at any point (x,y,z) ls
V(x,y,z) =3x^2
We know
vecE=-(hati(deltaV)/(deltax)+hatj(deltaV)/(deltay)+hatk( deltaV)/(deltaz))

The given function of Potential ‘V’ is independent of y and z.
So ( deltaV)/(deltay)=0 and ( deltaV)/(deltaz)=0

vecE=-hati(deltaV)/(deltax)
vecE=-(hatidelta(3x^2))/(deltax)

vecE=-hati(6x)
At the given point (2m,0,1m)
the Electric field is(for x=2)

vecE=-hati(6xx2)=-12hati V/m
,if the umit of potential is Volt