Question #bced5

1 Answer
Nov 21, 2017

See a solution process below:

Explanation:

We can rewrite this function using this rule for quadratics:

color(red)(x)^2 - color(blue)(y)^2 = (color(red)(x) + color(blue)(y))(color(red)(x) - color(blue)(y))x2y2=(x+y)(xy)

f(x) = -3x^4(color(red)(x)^2 - color(blue)(9))f(x)=3x4(x29)

f(x) = -3x^4(color(red)(x)^2 - color(blue)(3)^2)f(x)=3x4(x232)

f(x) = -3x^4(color(red)(x) + color(blue)(3))(color(red)(x) - color(blue)(3))f(x)=3x4(x+3)(x3)

Now, we can solve each term on the left side of the function for 00 to find each zero of the function:

Solution 1:

-3x^4 = 03x4=0

(-3x^4)/color(red)(-3) = 0/color(red)(-3)3x43=03

(color(red)(cancel(color(black)(-3)))x^4)/cancel(color(red)(-3)) = 0

x^4 = 0

root(4)(x^4) = root(4)(0)

x = 0

Solution 2:

x + 3 = 0

x + 3 - color(red)(3) = 0 - color(red)(3)

x + 0 = -3

x = -3

x = 0

Solution 3:

x - 3 = 0

x - 3 + color(red)(3) = 0 + color(red)(3)

x - 0 = 3

x = 3

The Solutions Are: x = {-3, 0, 3}

The graph of the function touch the x-axis at 0:

graph{y + 3x^6 - 27x^4 = 0 [-10, 10, -50, 400]}