If alpha,beta,gammaα,β,γ and deltaδ are roots of x^4+9x^2+7x-8=0x4+9x2+7x8=0, what is the value of (alpha+beta)(gamma+delta)+alpha*beta+gamma*delta(α+β)(γ+δ)+αβ+γδ?

1 Answer
May 26, 2016

(alpha+beta)(gamma+delta)+alpha*beta+gamma*delta=9(α+β)(γ+δ)+αβ+γδ=9

Explanation:

As alpha,beta,gammaα,β,γ and deltaδ are roots of x^4+9x^2+7x-8=0x4+9x2+7x8=0

We have (x-alpha)(x-beta)(x-gamma)(x-delta)hArrx^4+9x^2+7x-8=0(xα)(xβ)(xγ)(xδ)x4+9x2+7x8=0

or x^4-(alpha+beta+gamma+delta)x^3+(alpha*beta+alpha*gamma+alpha*delta+beta*gamma+beta*delta+gamma*delta)x^2-(alpha*beta*gamma+alpha*gamma*delta+alpha*beta*delta+beta*gamma*delta)x+alphabetagammadeltahArrx^4+9x^2+7x-8 (A)

As (alpha+beta)(gamma+delta)+alpha*beta+gamma*delta=alpha*gamma+alpha*delta+beta*gamma+beta*delta+alpha*beta+gamma*delta

comparing the coefficients of x^2 in (A)

(alpha+beta)(gamma+delta)+alpha*beta+gamma*delta=9