Question #e09ab

1 Answer
Jun 22, 2017

1/2secxtanx-cscx+3/2lnabs(secx+tanx)+C12secxtanxcscx+32ln|secx+tanx|+C

Explanation:

I=intcsc^2xsec^3xdxI=csc2xsec3xdx

Use csc^2x=1+cot^2xcsc2x=1+cot2x:

I=int(1+cot^2x)sec^3xdx=intsec^3xdx+intcsc^2xsecxdxI=(1+cot2x)sec3xdx=sec3xdx+csc2xsecxdx

Again use csc^2x=cot^2x+1csc2x=cot2x+1:

I=intsec^3xdx+int(cot^2x+1)secxdxI=sec3xdx+(cot2x+1)secxdx

color(white)I=intsec^3xdx+intsecxdx+intcotxcscxdxI=sec3xdx+secxdx+cotxcscxdx

The two rightmost integrals are standard:

I=intsec^3xdx+lnabs(secx+tanx)-cscxI=sec3xdx+ln|secx+tanx|cscx

Let J=intsec^3xdxJ=sec3xdx. To solve this, begin with integration by parts, letting:

u=secx" "=>" "du=secxtanxdxu=secx du=secxtanxdx
dv=sec^2xdx" "=>" "v=tanxdv=sec2xdx v=tanx

Then:

J=secxtanx-intsecxtan^2xdxJ=secxtanxsecxtan2xdx

Using tan^2x=sec^2x-1tan2x=sec2x1:

J=secxtanx-intsecx(sec^2x-1)dxJ=secxtanxsecx(sec2x1)dx

color(white)J=secxtanx-intsec^3xdx+intsecxdxJ=secxtanxsec3xdx+secxdx

The integral of secxsecx is common. We can add JJ to both sides since its reappeared on the right-hand side:

2J=secxtanx+lnabs(secx+tanx)2J=secxtanx+ln|secx+tanx|

J=1/2secxtanx+1/2lnabs(secx+tanx)J=12secxtanx+12ln|secx+tanx|

Then the original integral equals:

I=(1/2secxtanx+1/2lnabs(secx+tanx))+lnabs(secx+tanx)-cscxI=(12secxtanx+12ln|secx+tanx|)+ln|secx+tanx|cscx

color(white)I=color(blue)(1/2secxtanx-cscx+3/2lnabs(secx+tanx)+CI=12secxtanxcscx+32ln|secx+tanx|+C