I=intcsc^2xsec^3xdxI=∫csc2xsec3xdx
Use csc^2x=1+cot^2xcsc2x=1+cot2x:
I=int(1+cot^2x)sec^3xdx=intsec^3xdx+intcsc^2xsecxdxI=∫(1+cot2x)sec3xdx=∫sec3xdx+∫csc2xsecxdx
Again use csc^2x=cot^2x+1csc2x=cot2x+1:
I=intsec^3xdx+int(cot^2x+1)secxdxI=∫sec3xdx+∫(cot2x+1)secxdx
color(white)I=intsec^3xdx+intsecxdx+intcotxcscxdxI=∫sec3xdx+∫secxdx+∫cotxcscxdx
The two rightmost integrals are standard:
I=intsec^3xdx+lnabs(secx+tanx)-cscxI=∫sec3xdx+ln|secx+tanx|−cscx
Let J=intsec^3xdxJ=∫sec3xdx. To solve this, begin with integration by parts, letting:
u=secx" "=>" "du=secxtanxdxu=secx ⇒ du=secxtanxdx
dv=sec^2xdx" "=>" "v=tanxdv=sec2xdx ⇒ v=tanx
Then:
J=secxtanx-intsecxtan^2xdxJ=secxtanx−∫secxtan2xdx
Using tan^2x=sec^2x-1tan2x=sec2x−1:
J=secxtanx-intsecx(sec^2x-1)dxJ=secxtanx−∫secx(sec2x−1)dx
color(white)J=secxtanx-intsec^3xdx+intsecxdxJ=secxtanx−∫sec3xdx+∫secxdx
The integral of secxsecx is common. We can add JJ to both sides since its reappeared on the right-hand side:
2J=secxtanx+lnabs(secx+tanx)2J=secxtanx+ln|secx+tanx|
J=1/2secxtanx+1/2lnabs(secx+tanx)J=12secxtanx+12ln|secx+tanx|
Then the original integral equals:
I=(1/2secxtanx+1/2lnabs(secx+tanx))+lnabs(secx+tanx)-cscxI=(12secxtanx+12ln|secx+tanx|)+ln|secx+tanx|−cscx
color(white)I=color(blue)(1/2secxtanx-cscx+3/2lnabs(secx+tanx)+CI=12secxtanx−cscx+32ln|secx+tanx|+C