Question #5fa6a

1 Answer
Jun 1, 2016

(2+2x+sin2x)/((2x+sin2x)e^(sinx)) = (2+2x+sin2x)/((2x+sin2x))*1/e^sinx 2+2x+sin2x(2x+sin2x)esinx=2+2x+sin2x(2x+sin2x)1esinx

= [2/(2x+sin2x) +(2x+sin2x)/(2x+sin2x)]1/e^sinx=[22x+sin2x+2x+sin2x2x+sin2x]1esinx

= [2/(2x+sin2x) +1]1/e^sinx=[22x+sin2x+1]1esinx

As xrarroox, we see that

2/(2x+sin2x) rarr 022x+sin2x0, so

[2/(2x+sin2x) +1] rarr [0+1]=1[22x+sin2x+1][0+1]=1.

Furthermore, as xrarroox, the factor

1/e^sinx 1esinx oscillates between ee and 1/e1e

Therefore, the function

f(x) = (2+2x+sin2x)/((2x+sin2x)e^(sinx))f(x)=2+2x+sin2x(2x+sin2x)esinx does not approach a limit as xrarroox.

As xrarroox the relative maximum values of ff approach ee and the minimum values approach 1/e1e.

In the graph below, you see the function and the line y=ey=e. (When I also included y=1/ey=1e the graph developed holes in it.)

You can (and should) scroll in or out and drag the graph around to see what happens. (When you leave the page and return the default view will be there again.)

graph{(y- (2+2x+sin2x)/((2x+sin2x)e^(sinx)) )(y-e) = 0 [-1.55, 30.5, -5.19, 10.83]}