Question #a8dd2
1 Answer
Nov 8, 2016
Explanation:
I=intx^3e^(2x^2)dx
Before using integration by parts (IBP), we can make a simpler substitution. Let
Modifying the integral:
I=1/4intx^2e^(2x^2)(4xdx)=1/4int1/2te^tdt=1/8intte^tdt
Now we should apply IBP. This integration technique takes the form
{(u=t,=>,du=dt),(dv=e^tdt,=>,v=e^t):}
Recall to differentiate
Thus:
I=1/8(te^t-inte^tdt)=1/8(te^t-e^t)=1/8e^t(t-1)
Since
I=1/8e^(2x^2)(2x^2-1)+C