The equilibrium is
"Al"^"3+" + "6F"^"-" ⇌ "AlF"_6^(3-)Al3++6F-⇌AlF3−6
K_"eq" = 1.0 × 10^25Keq=1.0×1025.
That means that the reaction will essentially go to completion.
This becomes a limiting reactant problem.
"Moles of Al"^(3+) = 0.025 color(red)(cancel(color(black)("dm"^3 "Al"^(3+)))) × ("0.010 mol Al"^(3+))/(1 color(red)(cancel(color(black)("dm"^3 "Al"^(3+))))) = "0.000 25 mol Al"^"3+"
"Moles of AlF"_6^"3-" color(white)(l)"from Al"^(3+) = "0.000 25" color(red)(cancel(color(black)("mol Al"^(3+)))) × ("1 mol AlF"_6^"3-")/(1 color(red)(cancel(color(black)("mol Al"^(3+))))) = "0.000 25 mol AlF"_6^"3-"
"Moles of F"^"-" = 0.025 color(red)(cancel(color(black)("dm"^3 "F"^"-"))) × ("0.10 mol F"^"-")/(1 color(red)(cancel(color(black)("dm"^3 "F"^"-")))) = "0.0025 mol F"^"-"
"Moles of AlF"_6^"3-" color(white)(l)"from F"^"-" = 0.0025 color(red)(cancel(color(black)("mol F"^"-"))) × ("1 mol AlF"_6^"3-")/(6 color(red)(cancel(color(black)("mol F"^"-")))) = "0.000 433 mol AlF"_6^(3-)
"Al"^(3+) gives the fewest moles of "AlF"_6^"3-", so "Al"^(3+) is the limiting reactant.
Thus, when the reaction is complete, we have "0.000 25 mol AlF"_6^"3-" in "50 cm"^3 of solution.
∴ ["AlF"_6^"3-"] ="0.000 25 mol"/("0.050 dm"^3) = "0.0050 mol/dm"^3