What is the range of f(x) = ln(sin^(-1)(x^2+x+3/4))f(x)=ln(sin−1(x2+x+34)) ?
1 Answer
Jun 15, 2017
Explanation:
Given:
f(x) = ln(sin^(-1)(x^2+x+3/4))f(x)=ln(sin−1(x2+x+34))
First note that:
x^2+x+3/4 = x^2+x+1/4+1/2 = (x+1/2)^2+1/2x2+x+34=x2+x+14+12=(x+12)2+12
which can take any value in the range
The domain of
So the possible valid arguments to it in
[1/2, oo) nn [-1, 1] = [1/2, 1][12,∞)∩[−1,1]=[12,1]
sin^(-1)(1/2) = pi/6sin−1(12)=π6
sin^(-1)(1) = pi/2sin−1(1)=π2
and
So the range of
Hence the range of
[ln(pi/6), ln(pi/2)][ln(π6),ln(π2)]