If 1/(x^b+x^(-c)+1) + 1/(x^c+x^-a+1) + 1/(x^a+x^(-b)+1) = 1 then what can we say about a, b, c ?

2 Answers
Aug 21, 2016

a+b+c=0

Explanation:

For any non-zero value of x, we have x^0 = 1.

So with a=b=c=0 we have:

1/(x^b+x^(-c)+1) + 1/(x^c+x^-a+1) + 1/(x^a+x^(-b)+1)

=1/3+1/3+1/3 = 1

Actually as seen in https://socratic.org/s/axdYQgwe, if a+b+c=0 then this equation holds for any non-zero value of x.

Note also that if a=b=c=k then:

1 = 1/(x^k+x^(-k)+1) + 1/(x^k+x^-k+1) + 1/(x^k+x^(-k)+1)

=3/(x^k+x^(-k)+1)

So we have:

x^k+x^(-k)+1 = 3

Subtracting 3 from both sides and multiplying through by x^k we get:

0 = (x^k)^2-2(x^k)+1 = (x^k-1)^2

So x^k = 1

This is satisfied for any non-zero value of x if k = 0 and no other values of k.

Aug 21, 2016

a+b+c=0

Explanation:

Using "brute force" or with the help of a symbolic processor,

1/(x^b + x^-c + 1) + 1/(x^c + x^-a + 1) + 1/(x^a + x^-b + 1) =n/d=1

n = (x^a + x^b + 2 x^(a + b) + x^(2 a + b) + x^c + 2 x^(a + c) + 2 x^(b + c) + 6 x^(a + b + c) + 2 x^(2 a + b + c) + x^(2 b + c) + 2 x^(a + 2 b + c) + x^(2 a + 2 b + c) + x^(a + 2 c) + 2 x^(a + b + 2 c) + x^(2 a + b + 2 c) + x^(a + 2 b + 2 c))

d = (1 + x^a + x^b + 2 x^(a + b) + x^(2 a + b) + x^c + 2 x^(a + c) + 2 x^(b + c) + 4 x^(a + b + c) + 2 x^(2 a + b + c) + x^(2 b + c) + 2 x^(a + 2 b + c) + x^(2 a + 2 b + c) + x^(a + 2 c) + 2 x^(a + b + 2 c) + x^(2 a + b + 2 c) + x^(a + 2 b + 2 c) + x^( 2 a + 2 b + 2 c))

but

n-d = -1 + 2 x^(a + b + c) - x^(2 (a + b + c)) so if n = d

-1 + 2 x^(a + b + c) - x^(2 (a + b + c))=0

Solving for x^(a + b + c) we obtain

x^(a + b + c) = 1 then a+b+c=0